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Abstract 
There are two positions in the classic debate regarding 
musical emotion: the cognitivist position and the emotivist 
position. According to the cognitivist position, music 
expresses emotion but does not induce it in listeners. So, 
listeners may recognize emotion in music without feeling it, 
unlike real, everyday emotion. According to the emotivist 
position, listeners not only recognize emotion but also feel it. 
This is supported by their physiological responses during 
music listening, which are similar to responses occurring with 
real emotion. When listeners provide emotion appraisals, if 
the cognitivist position were true, then these appraisals might 
be based on audio features in the music. However, if the 
emotivist position were true, then appraisals would be based 
on the emotion experienced by listeners as opposed to what 
they perceived in the audio features. We propose a hypothesis 
combining both positions according to which, listeners make 
emotion appraisals based on a combination of what they 
perceive in the music as well as what they experience during 
the listening process. In this paper, we explore all three 
positions using connectionist prediction models, specifically 
four different neural networks: (a) using only audio features 
as input, (b) using only physiological features as input, (c) 
using both audio and physiological features as input, and (d) 
using a committee machine that combines contributions from 
an audio network and a physiology network. We examine the 
performance of these networks and discuss their implications 
as possible cognitive models of emotion appraisal within 
listeners.  

Keywords: musical emotion; connectionist models; neural 
networks. 

Introduction 
There are two positions in the classic debate regarding 
musical emotions: the cognitivist position and the emotivist 
position. According to the cognitivist position, music can 
express emotion but it does not actually induce it in the 
listener (Konečni, 2007; Meyer, 1956). So, the listener may 
recognize the emotion without feeling it as they would in 
the case of everyday emotion. However, other studies 
(Gabrielsson, 2002; Juslin & Västjfäll, 2008) have shown 
that listeners, in most cases, not only recognize emotions 
within music but also undergo physiological changes during 
music listening. These physiological changes are 
characteristic of changes that occur with real, everyday 
emotion. This has been used as evidence by the emotivist 

position that music induces emotion that is quite similar to 
everyday emotion, and in effect, genuine. 

When a listener is asked to provide an appraisal of 
emotion experienced while listening to a music excerpt, he 
or she has to make an assessment at a cognitive level. If the 
cognitivist position is true, then the emotional appraisal can 
be based on an assessment of audio features (deep and/or 
surface-level). However, if the emotivist position is true, 
then the listener makes his or her appraisal on the basis of 
the emotion he or she experiences. We propose a third 
position that involves a combination of the cognitivist and 
emotivist positions. Our hypothesis is that appraisals of 
musical emotion are made by listeners based on a 
combination of what they perceive in the music and what 
they experience during the listening process. 

In this paper, we explore all three positions using 
connectionist models, specifically feedforward neural 
networks (multilayer perceptrons). If the cognitivist position 
were true, then audio features alone would be sufficient to 
capture the emotion appraisals made by human listeners. 
Likewise, if the emotivist position were true, then 
physiological features alone would be sufficient to capture 
the emotion appraisals made by human listeners. On the 
other hand, if emotions were appraised by a listener based 
on a combination of what the listener perceives as well as 
what he or she feels, the ideal model would involve a 
combination of audio and physiological features. 

We used four neural networks as models of musical 
emotion. The first network takes only audio features as 
network inputs. The second network takes only 
physiological responses of participants as network inputs. 
The third and fourth network combine audio and 
physiological features in different ways. The third network 
uses a combination of audio and physiological features as 
inputs whereas the fourth network is a meta-level network 
(i.e. a committee machine), which takes the outputs from 
two expert networks and combines them to form appraisals 
of musical emotion. We examine the performance of these 
networks and discuss their implications as possible 
cognitive models of emotion appraisal within listeners.  

Discrete and dimensional methods have been used to 
capture emotion assessments of listeners during music 
listening. While discrete methods label emotions into 
specific categories such as happy and angry, dimensional  
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Table 1: 12 music excerpts with composers, emotion quadrants, mean valence/arousal ratings, and standard deviations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models allow emotions to be characterized on an                 
n-dimensional space. We used a 2-dimensional space, 
comprised of valence and arousal, to capture appraisals of 
musical emotion (Russell, 1980). Valence refers to the 
hedonistic aspect of felt emotion, ranging from pleasant to 
unpleasant. Arousal refers to the activation aspect of felt 
emotion, ranging from calm to excited. Using this method 
of capturing felt emotion provided us with two advantages: 
(a) the ability to compute the emotional distance between 
musical excerpts, and (b) the ability to avoid categorizing an 
excerpt by a specific emotion label in cases where the 
emotion is ambiguous. 

Stimuli and Data Collection 
Our stimuli consisted of 12 classical music excerpts from 12 
different composers. These excerpts were chosen based on 
previous work investigating emotional responses to music 
(Bigand et al., 2005; Nyklicek et al., 1997; Sandstrom & 
Russo, 2010). As shown in Table 1, they were chosen such 
that three excerpts represented each of the four emotion 
quadrants in Russell’s circumplex: high arousal, positive 
valence (Happy); high arousal, negative valence (Agitated); 
low arousal, negative valence (Sad); and low arousal, 
positive valence (Peaceful).  

We used data from 20 participants (17 females, 1 male, 2 
undeclared). On average, the participants were 25 years of 
age (SDage = 9.2) and had limited music training: 1.7 years 
of individual training (SD = 2.9) and 2 years of group 
training (SD = 2.8). Participants heard the 12 music excerpts 
in a single session. Each excerpt was preceded by 30 
seconds of white noise and followed by 50 seconds of 
silence. Participants were randomly assigned to any one of 
four randomized orders of the excerpts.  

Physiological responses were collected from five different 
channels during music listening using the Biopac MP100 
data acquisition system. The five physiological channels 
included heart rate (HR), skin conductance level (SCL), 
respiration rate (Resp), and facial muscle activity from 

zygomaticus major (Zyg) and corrugator supercilii (Corr). 
After hearing each excerpt, participants provided subjective 
appraisals of felt emotion using two Likert-type scales 
ranging from 1 to 9: valence (least pleasant/most pleasant), 
and arousal (least excited/most excited). 

Neural Network Models 
Previous studies have explored various methods for 
predicting a listener’s assessment of emotion from music. 
Laurier et al. (2009) used Support Vector Machines to 
predict discrete emotion categories from timbral, tonal, and 
rhythmic audio features. Kim and André (2008) created an 
automatic emotion recognition system based on 
physiological inputs of listeners. They extracted 
physiological features that were correlated with emotions 
and used an extended linear discriminant analysis to classify 
these emotions. Coutinho and Cangelosi (2011) used neural 
networks combining audio features and physiological 
features to predict emotion. 

Our goal is not to provide a prediction method that adds 
to these existing approaches, but to provide a theoretical 
explanation on how musical emotion might be perceived, 
felt, and assessed by a listener through a suitable 
computational modeling approach. Towards this end, 
supervised feedforward neural networks with 
backpropagation (i.e. multilayer perceptrons) (Rumelhart, 
Hinton, & Williams, 1986; Haykin, 2008) are useful 
connectionist models that not only act as nonlinear 
regression functions for emotion prediction but also allow 
us to explore cognitive theories pertaining to emotion. The 
architecture of our feedforward networks is simple with one 
hidden layer providing the necessary level of nonlinearity. 
All the networks were implemented in Matlab. 

Audio Network 
From each of the 12 music excerpts, we extracted 13 low- 
and mid-level audio features relevant to rhythm, timbre, 

    Valence Arousal 
Excerpt Composer Composition Quadrant Mean  SD Mean SD 
M1 Bartok Sonata for 2 pianos and percussion (Assai lento) Agitated 5 2.13 6.35 2.21 
M2 Shostakovich Symphony No. 8 (Adagio) Agitated 3.35 1.84 7.45 1.43 
M3 Stravinsky Danse sacrale (Le Sacre duPrintemps) Agitated 3.95 1.99 7.15 1.95 
M4 Beethoven Symphony No. 7 (Vivace) Happy 6.6 1.6 6.35 1.57 
M5 Liszt Les Preludes Happy 5.75 1.52 6.25 1.48 
M6 Strauss Unter Donner und Blitz Happy 6.8 1.94 7.5 1.19 
M7 Bizet Intermezzo (Carmen Suite) Peaceful 6.6 1.6 2.85 1.93 
M8 Dvorak Symphony No. 9 (Largo) Peaceful 5.95 1.85 2.65 1.66 
M9 Schumann Traumerei Peaceful 5.75 1.86 2.8 1.91 
M10 Chopin Funeral March, Op. 72 No. 2 Sad 4.85 1.87 2.55 1.54 
M11 Grieg Aase’s Death (Peer Gynt) Sad 4.05 1.93 4.15 2.25 
M12 Mozart Requiem (Lacrimosa) Sad 4.3 1.78 3.75 2.45 
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pitch, tonality, and dynamics using MIRtoolbox (Lartillot, 
Toiviainen, & Eerola, 2008): rms, lowenergy, eventdensity, 
tempo, pulseclarity, zerocross, centroid, spread, rolloff, 
brightness, irregularity, inharmonicity, and mode. We used 
the same training and test sets for all four networks to allow 
consistent comparisons of performance. Our training set 
consisted of eight of the 12 excerpts; we randomly chose 
two out of three excerpts from each emotion quadrant to 
obtain a good representation of emotion. The eight excerpts 
were M1, M2 (agitated), M4, M5 (happy), M7, M8 
(peaceful), and M10, M11 (sad). The test set consisted of 
the remaining four excerpts, which were M3 (agitated), M6 
(happy), M9 (peaceful), and M12 (sad).  

The audio network’s architecture was similar to the one 
we used for a previous study (Vempala & Russo, 2012) 
involving valence and arousal predictions based on training 
data from a set of 45 participants. The audio network was a 
supervised, feedforward network that consisted of 13 input 
units (i.e. one unit for each audio feature), one hidden layer 
with 13 units, and two output units, as shown in Figure 1. 
Our training set consisted of eight input and output vectors, 
corresponding to the eight training melodies. Each input 
vector had 13 values, one for each audio feature. The output 
vector consisted of mean arousal and valence values of all 
20 participants corresponding to each input melody. Values 
of all the features, including arousal and valence, were 
scaled between 0 and 1 for efficient network learning 
(Bishop, 1996). The number of hidden units was set to be 
equal to the number of input units so as to avoid overfitting 
the network to the training set. Connection weights were 
initialized to random numbers between -0.05 and 0.05. The 
eight input vectors were randomly fed to the network. For 
each input vector, network predicted outputs were compared 
with desired outputs (i.e. mean participant ratings). The 
error was computed and the backpropagation algorithm was 
applied. Weight changes were stored, summed together at 
the end of each epoch, and applied to the connection 
weights. The learning rate was set to 0.1. The network was 
trained till the mean squared error was less than 0.012 
(140,000 epochs).  

We obtained results as shown in Figure 2. Results of the 
network are shown in comparison to the means of ratings 
provided by participants. Our results showed that the audio 
network performed well in predicting valence/arousal 
ratings for three of the four excerpts: M3 (Stravinsky), M6 
(Strauss), and M12 (Mozart). To quantify the network’s 
overall performance, we computed Euclidian distances 
between mean participant ratings and network-predicted 
values as a measure of performance error for each of the 
four test melodies. The network’s performance error was 1.6 
on average (on a scale from 1 to 9) or 14.2%, indicating that 
the network accuracy was 85.8%. On the valence 
dimension, the network accuracy was 91.6%. On the arousal 
dimension, the network accuracy was 83.2%. The largest 
error contribution came from the arousal dimension for M9 
(Schumann). 
 

 
 

Figure 1: Audio network with 13 input units, 13 hidden 
units, and two output units. Connection weights Whi and Woh 
are from input to hidden layer, and hidden to output layer 
respectively. A subset of the 13 units are shown here. 
 

Physiology Network 
For each participant, each channel of physiological data was 
first standardized into z-scores. Physiological responses for 
a given participant were determined by subtracting the mean 
of baseline values (white noise) from the mean of excerpt 
values. The mean physiological response values (collapsed 
across the 20 participants) were used as inputs for this 
network. A detailed description of the physiology network 
is provided in Russo, Vempala, and Sandstrom (under 
review).  

The physiology network’s architecture was similar to the 
audio network, with one input layer, one hidden layer, and 
one output layer. It had five input units (i.e. one unit for 
each physiological feature/channel), five hidden units, and 
two outputs units. Again, the number of hidden units was set 
to be equal to the number of input units to avoid overfitting. 
The same training set with eight input and output vectors, 
corresponding to the eight training excerpts was used. 
Values of all five physiological features were scaled 
between 0 and 1. Instead of 13 audio feature values, each 
input vector consisted of five physiological feature values. 
Again, the output vector had the same, scaled, mean valence 
and arousal values corresponding to each excerpt. The 
procedure used for training was exactly similar to what was 
used for the audio network, with learning rate set to 0.1. The 
network was trained till the mean squared error was less 
than 0.012 (80,000 epochs). 

Results of the network are shown in comparison to 
participant ratings, in Figure 2. The network predicted 
valence/arousal ratings for M3 (Stravinsky) and M9 
(Schumann) well, and M6 (Strauss) reasonably well. Again, 
we quantified the network’s overall performance by 
computing Euclidian distances between mean participant 
ratings and network-predicted values. The network’s 
performance error was 1.48 on average (on a scale from 1 to 
9) or 13%, indicating that the network accuracy was 87%. 
On the valence dimension, the network accuracy was 
90.1%. On the arousal dimension, the network accuracy was 
87.3%. 
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Audio-Physiology Network 
Since overall prediction performances of both the audio 
network and the physiology network were more or less 
similar (85.8% vs. 87%), our next step involved combining 
both sets of features (i.e. 13 audio features and five 
physiological features) together into one input vector of 18 
features. Our goal was to see if a combined feature set 
resulted in better prediction performance. Similar to the 
architecture of the previous two networks, the audio-
physiology network had one input layer, one hidden layer, 
and one output layer. However, it had 18 input units, 13 
hidden units, and two outputs units. The same training set 
was used with eight input and output vectors, corresponding 
to the eight training excerpts. The 18 input units in each 
input vector consisted of the same set of 13 audio and five 
physiological values used in the previous two networks, for 
each music excerpt. The output vector had the same, scaled, 
mean valence and arousal values corresponding to each 
excerpt. The procedure used for training was exactly similar 
to what was used for the previous networks, with the 
learning rate set to 0.1. The network was trained until the 
mean squared error was less than 0.012 (12,000 epochs). 
Results of the network are shown in comparison to 
participant ratings, in Figure 2. The network performed well 
with M3 (Stravinsky) and M9 (Schumann), and reasonably 
well with M12 (Mozart). Its worst prediction performance 
was with M6 (Strauss). Again, we quantified the network’s 
overall performance by computing Euclidian distances 
between mean participant ratings and network-predicted 
values. The network’s performance error was 1.28 on 
average (on a scale from 1 to 9) or 11.3%, indicating that 
the network accuracy was 88.7%. On the valence 
dimension, the network accuracy was 89.6%. On the arousal 
dimension, the network accuracy was 89.1%. 
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Figure 2: Participant valence/arousal ratings (R) on a scale 
of 1 to 9, and corresponding outputs from audio network 
(AN), physiology network (PN), and audio-physiology 
network (APN) for the four test excerpts M3, M6, M9, and 
M12. 
 

Committee Machine 
The audio-physiology network performed slightly better 
than both individual networks: audio network and 
physiology network, although the improvement in 
performance was relatively small. Two additional 
phenomena that can be observed are that (a) the training 
time for this network was considerably shorter, with only 
12,000 epochs, and (b) the network performance was good 
for both arousal and valence dimensions. This suggests that 
there is emotion information exclusive to each network, and 
important for both dimensions, that may be shared when 
both sets of features are combined. The richer, combined 
feature set facilitates earlier convergence of the network 
towards a learned solution. However, this combination 
resulted in a small advantage as regards prediction 
performance. So, one plausible model of emotion 
assessment would be the following. Listeners make separate 
emotion assessments based on what they perceive from the 
music and what they feel when listening. Their final 
appraisal of emotion is based on a weighted judgment that 
takes contributions from both sources. This led us to 
implement our final model for emotion assessment: a 
committee machine (Haykin, 2008). The committee 
machine is a meta-level network, as shown in Figure 3. It 
combines outputs from each individual predictor to arrive at 
the overall output.  
 

 
 

Figure 3: Committee machine consisting of a meta-level 
network that combines weighted outputs from the audio 
network and the physiological network. W1A and W1V are 
output weight contributions for arousal and valence from the 
audio network, and W2A and W2V are output weight 
contributions for arousal and valence from the physiology 
network. 
 
 

As a first step, we used a basic committee machine that 
combined outputs through ensemble averaging. The meta-
level network computed the average valence and arousal 
outputs from the audio network and the physiology network. 
In other words, the weight contributions for each individual 
network were 0.5. Results of this network are shown in 
comparison to participant ratings, in Figure 4. The network 
performed well with M3 (Stravinsky) and M12 (Mozart), 
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and reasonably well with M6 (Strauss). Its worst prediction 
performance was on the arousal dimension for M9 
(Schumann). Based on Euclidian distances between mean 
participant ratings and network-predicted values, the 
network’s performance error was 1.32 on average (on a 
scale from 1 to 9) or 11.7%, indicating that the network 
accuracy was 88.3%. On the valence dimension, the 
network accuracy was 90.8%. On the arousal dimension, the 
network accuracy was 88.6%.  

The results did not show any improvement in 
performance between the committee machine with ensemble 
averaging and the audio-physiology network. Hence, to 
obtain an optimal linear combination of the weights 
(Hashem, 1997) we performed multiple linear regression 
with outputs from individual networks as independent 
variables and mean participant valence/arousal ratings as 
dependent variables, for the four test excerpts. The model 
for arousal is provided in Equation 1. The model for valence 
is provided in Equation 2. Here, x1A and x1V refer to the 
arousal and valence outputs from the audio network on a 
scale from 0 to 1. Likewise, x2A and x2V refer to the arousal 
and valence outputs from the physiology network on a scale 
from 0 to 1. yA and yV refer to the overall arousal and 
valence outputs of the committee machine on a scale from 0 
to 1. 

 
yA = 0.527 x1A +1.166 x2A – 0.464         (1) 
yV = 0.941 x1V – 0.357x2V +0.199         (2) 
 
Based on Equation 1, for arousal, the meta-level network 

applies a weight of 0.527 to the audio network output, 1.166 
to the physiology network output, and has a bias unit of 
weight -0.464. Likewise, for valence, based on Equation 2 
the meta-level network applies a weight of 0.941 to the 
audio network output, -0.357 to the physiology network 
output, and has a bias unit of weight 0.199. To understand 
the significance of each individual network’s contribution to 
the overall prediction, we computed their proportion 
contributions while ignoring the signs of the weights and the 
intercepts. For arousal, the weight contributions were 31.1% 
from the audio network, and 68.9% from the physiology 
network. For valence, the weight contributions were 72.5% 
from the audio network, and 27.5% from the physiology 
network. 

Results of this network are shown in comparison to 
participant ratings, in Figure 4. The network performed well 
with M3 (Stravinsky), M9 (Schumann), and M12 (Mozart), 
and reasonably well with M6 (Strauss). Based on Euclidian 
distances between mean participant ratings and network-
predicted values, the network’s performance error was 0.86 
on average (on a scale from 1 to 9) or 7.6%, indicating that 
the network accuracy was 92.4%. On the valence 
dimension, the network accuracy was 92.2%. On the arousal 
dimension, the network accuracy was 93.6%. These results 
clearly indicate that the committee machine with optimal 
linear combination of weights had the best prediction 
performance across all networks. 
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Figure 4: Participant valence/arousal ratings (R) on a scale 
of 1 to 9, and corresponding outputs from committee 
machine with ensemble averaging (CMEA), and committee 
machine with linear regression (CMLR) for the four test 
excerpts M3, M6, M9, and M12. 

Discussion and Conclusions 
Our results showed that the audio network had a 

performance of approximately 86%, and the physiology 
network had a performance of 87%. This suggests that there 
is sufficient information contained in both the audio features 
as well as the physiological responses for emotion 
prediction. So, if we look at the two models in isolation, 
then both positions are plausible for emotion assessment 
based on the performances; audio network favors the 
cognitivist position and physiology network favors the 
emotivist position. However, we notice a marginal 
improvement in prediction performance in the audio-
physiology network (89%) when both kinds of features are 
combined as inputs to one network. This suggests that there 
is some complementary information regarding emotion that 
is available through feature combination, which is not 
accessible from individual networks. So, perhaps emotion 
appraisals are being made by listeners at a higher cognitive 
level through the weighting of separate processes, and not 
through a single combined representation. In other words, 
only after emotion assessments are formed through 
perceived features and felt emotion does the listener make 
an appraisal regarding the excerpt’s emotional content 
through weighted contributions from both. A committee 
machine captures this theory well and illustrates how these 
weighted contributions might occur in the mind of the 
listener.  

There are various limitations in this modeling study that 
we plan to address in the future. First and foremost, our data 
set is relatively small with just 12 excerpts. Hence, the 
committee machine had to be trained on the same test set 
that was used for testing individual networks, thus reducing 
its generalizability. We intend to expand our modeling to 
larger data sets where both individual networks learn using 
one training set, and the committee machine learns the 
optimal linear combination of weights through another 
training set that is separated from the test set. Next, in 
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addition to having separate data sets for both types of 
training, we also intend to expand the size of each data set. 
Eight training melodies may not fully capture variance 
across participants. It is also likely that participants will 
vary in their physiological responses, depending on their 
preferences, training, and tendency to be absorbed by music 
(Sandstrom & Russo, 2013). Our next goal involves training 
separate networks that are tuned to different types of 
listeners. We contend that an approach that is sensitive to 
listener type will influence the respective weight of 
physiological and audio contributions to the combined 
network. Finally, all of the excerpts tested here were within 
the domain of classical music. We intend to include excerpts 
that include a wider range of musical genres in our future 
studies. 

Despite these limitations, we believe that our model 
makes a significant contribution to the literature on music 
and emotion. To the best of our knowledge, no previous 
study has explored the cognitivist vs. emotivist debate 
through the lens of cognitively based computational 
modeling. Our model suggests that emotion appraisals are 
made by listeners through a combination of what they 
perceive from the music as well as what they feel during the 
listening process. We have modeled this using a meta-level 
network, thus supporting the view that the final appraisal is 
likely the outcome of a higher-level decision making 
process that combines together independent assessments 
from perception and feeling. 
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